
Formal Modeling and Analysis of Distributed Systems

ABSTRACT
Large scale distributed systems are difficult to design and test.
Hence, it is not uncommon for design bugs to escape guard rails of
design reviews, functional and stress testing, and get uncovered by
customers in production. Formal methods can play an important
role in addressing these challenges and help catch these bugs early
on in the development process.

In this tutorial, we present formal methods tools and techniques
used at Amazon Web Services (AWS) to reason about the correct-
ness and performance of distributed systems. We will provide an
introduction to the P framework and also share our experience of
integrating P in all the phases of the development process from
design, to testing, to after deployment. One of our goals with this
tutorial is to ignite a discussion between the formal methods and
systems community on challenges faced by practitioners when
building complex distributed systems.
ACM Reference Format:
. 2023. Formal Modeling and Analysis of Distributed Systems. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Distributed systems are notoriously hard to get right. Program-
ming these systems is challenging because of the need to reason
about both correctness and performance in the presence of myriad
possible interleaving of messages, failures, and variation in work-
loads. Unsurprisingly, it is common for service teams to uncover
design-level bugs after deployment. Formal methods (FM) can play
an important role in addressing this challenge. Formal methods
have proven to be extremely valuable to the builders of large scale
distributed systems [5, 8, 9], and to the researchers designing dis-
tributed protocols [11]. Increasingly, formal verification papers are
getting published in top systems conferences [3, 4, 6, 7, 12], but,
most of these papers involve application of formal methods by ex-
perts in the domain and not by developers in industry. On the other
hand, the systems community have been building complex, novel
system and protocols, but they are rarely backed by formal methods
tools. We seek to ignite a discussion between the two communities
and discuss the state-of-the-art, along with open challenges that
needs attention.

The goal of our tutorial is to provide an overview of how prac-
titioners are leveraging formal methods when designing complex
distributed systems. We would like to share our experience applying
formal methods to distributed systems at Amazon Web Services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(AWS). We will present P, a state machine-based programming lan-
guage for formally modeling and specifying complex distributed
systems (P-Github [10]). P is a unified framework that not only
allows developers to reason about correctness (using model check-
ing) but also conduct performance analysis (using probabilistic
simulation) of the system design. P also enables integrating FM
in all the phases of development process from system design, to
implementation, to unit and integration testing, and even in pro-
duction. In this tutorial, we will get the audience started on P using
well known distributed protocols as examples, demonstrate all the
different aspects of the framework, especially, highlight the basic
principles of formal methods. We will use examples from AWS to
highlight our learning.

P Framework
The P framework has four important parts:
(1) a high-level state machine-based programming language
that allows programmers to specify their system design as a collec-
tion of communicating state machines, which is how they normally
think about complex system design. P being a programming lan-
guage (rather than a mathematical modeling language) has been
one of the key reasons for its large-scale adoption in industry;
(2) P supports scalable analysis engines (based on automated
reasoning techniques like model checking and symbolic execution)
to check that the distributed systemmodeled in P satisfy the desired
correctness specifications. P leverages distributed compute to scale
model checking to large system design and has helped find critical
bugs inside AWS early on in design phase itself. P also supports a
backend explorer that performs random probabilistic simulations of
the system for reasoning about performance quantitatively.
(3) P provides code conformance checking to bridge the gap
between design specifications and the actual implementation. Using
runtimemonitoring, we check that the system traces (or logs) satisfy
the P specifications checked during the design phase;
(4) fourth and the final component is the ability to integrate these
analysis engines and code conformance checks into the CI/CD
of the service teams. For example, if P model checking fails then it
can block the build-release pipelines of the service teams.

Impact of P inside AWS. Teams across AWS from storage (e.g., S3),
to databases (e.g., Aurora, DynamoDB), to compute (e.g., EC2) have
been using P to reason about the correctness of complex distributed
protocols driving these services. P has helped find and eliminate
several critical bugs in the design, early on, these bugs could not be
found using the traditional testing approaches. From our experience
(3+ years) of using P inside AWS,we have observed that P has helped
developers in three critical ways: (1) “P as a thinking tool”: Writing
formal specifications in P forces developers to think about their
system design rigorously, and in turn helped in bridging gaps in
their understanding of the system. A large fraction of the bugs
was eliminated in the process of writing specifications itself! (2) “P
as a bug finder”: Model checking helped find corner case bugs in
system design that were missed by stress and integration testing.
(3) “P helped boost developer velocity”: After the initial overhead of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Desai and Brooker, et al.

creating the formal models, future updates and feature additions
could be rolled out faster as these non-trivial changes are rigorously
validated before implementation.

Thinking beyond correctness is critical. Typically, formal methods is
focused on checking correctness properties (safety and liveness).
This makes sense: safety violations cause issues like data corruption
and loss which are correctly considered to be among the most
serious issues with distributed systems. But, when making design
decision for distributed systems (e.g. what protocols to use for
committing transactions), in addition to correctness, the following
questions are often debated: What latency can customers expect, on
an average and in an outlier cases? How sensitive is the design to
network latency or packet loss? How do availability and durability
scale with the number of replicas? Traditionally, these questions
have been addressed by prototyping, closed-form modelling, and
simulations. In particular, database community have traditionally
used performance simulation to evaluate and compare protocols [1,
2], however, there is definitely a need for approaches that can
reduce the barrier to entry and make performance analysis a part
of the design process itself. To this end, we extended the P analysis
backend with capabilities to perform probabilistic simulation of the
system design and collect metrics from these simulations. The key
point to note is that for conducting performance simulations, we
are reusing the same formal models that were created for checking
the correctness of the system.

2 TUTORIAL OVERVIEW
We will provide a 1.5 hour tutorial (can also do a 3 hour tutorial
if there is interest), broken down into 3 modules.
Module 1: Introduction to Formal Methods and P (30 min).
In this module, we will introduce the basic principles of formal
methods by modeling two popular protocols (two phase commit
and optimistic concurrency control) in P.
(10 min) Enumerate existing approaches and highlight the benefits
of light-weight formal methods.
(10 min) Use the well-known two-phase-commit (2PC) protocol
to introduce the P language. This will provide an overview of the
language primitives and highlight the key aspect of modeling dis-
tributed system design as communicating state machines.
(10 min) Now that the audience have basic understanding of the P
language, we will give a code walk-through over the formal models
of the complex optimistic concurrency control (OCC) protocol. The
objective is to demonstrate how creating abstract formal models
of complex protocols can help in thinking about these protocols
abstractly and reason about their correctness.
Module 2: Checking Correctness of Design and Implemen-
tation (30 min). In this module, we will introduce the process of
writing correctness specifications (global invariants) and checking
them on both the formal models and the implementation of the
system.
(5 min) We will revisit the formal models of the 2PC and OCC
protocols. Wewill discuss the correctness properties that the system
must satisfy, (for e.g., atomicity for 2PC and seriazability for OCC).
(10 min) We will do a code walk-through over the atomicity and
serialiability safety properties in P.

(10 min) We will demonstrate how the P model checker can check
these correctness properties on the formal models.
(5 min) We will finally demonstrate how using the P runtime
monitoring framework, we can check these specifications on logs
generated from the implementation. The goal is to show that the
P specifications can be connected to the implementation and keep
the design specifications in sync with it.
Module 3: Going beyond Correctness (30 min). In this module,
we will first introduce the importance of thinking about perfor-
mance trade-offs when designing complex systems and not just
correctness. We will describe how we can leverage the formal mod-
els used for checking correctness to also answer some basic perfor-
mance questions using simulations.
(10 min) Using anecdotal evidence from our experience at AWS,
we will describe how design decisions can have implications on
performance of the system. The goal is to convey to the audience
that performance is correctness as well!
(10 min) Using the example of 2PC and OCC, we will demonstrate
how random simulations of the formal models can help answer sim-
ple questions about the behavior of these protocols under different
failure and workload scenarios.
(10 min) We will finally conclude by summarizing how we can
cross pollinate ideas between the database and formal methods
community to build tools and techniques that can help practitioners
build reliable systems.

2.1 Target Audience
The target audience for this tutorial are practitioners building sys-
tems or designing protocols and would like to reason about their
system, these include graduate students, researchers, and indus-
try developers. The audience will be exposed to challenges and
open problems that needs attention from the systems and formal
methods communities.

REFERENCES
[1] Rakesh Agrawal, Michael J. Carey, and Miron Livny. 1987. Concurrency Control

Performance Modeling: Alternatives and Implications. ACM Trans. Database Syst.
12, 4 (nov 1987), 609–654. https://doi.org/10.1145/32204.32220

[2] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. ACM Comput. Surv. 13, 2 (jun 1981), 185–221.
https://doi.org/10.1145/356842.356846

[3] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bern-
hard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar
Tasiran, Jacob Van Geffen, and Andrew Warfield. 2021. Using lightweight
formal methods to validate a key-value storage node in Amazon S3. In SOSP
2021. https://www.amazon.science/publications/using-lightweight-formal-
methods-to-validate-a-key-value-storage-node-in-amazon-s3

[4] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019.
Verifying Concurrent, Crash-Safe Systems with Perennial. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA,
243–258. https://doi.org/10.1145/3341301.3359632

[5] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani,
and Damien Zufferey. 2013. P: safe asynchronous event-driven programming. In
PLDI. ACM, 321–332.

[6] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jay Lorch, Bryan Parno, Justine
Stephenson, Srinath Setty, and Brian Zill. 2015. IronFleet: Proving Practical
Distributed Systems Correct. In Proceedings of the ACM Symposium on Operat-
ing Systems Principles (SOSP) (proceedings of the acm symposium on operat-
ing systems principles (sosp) ed.). ACM - Association for Computing Machin-
ery. https://www.microsoft.com/en-us/research/publication/ironfleet-proving-
practical-distributed-systems-correct/

[7] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz Qadeer, Upa-
manyu Sharma, James R. Wilcox, and Xueyuan Zhao. 2020. Armada: Low-Effort

https://doi.org/10.1145/32204.32220
https://doi.org/10.1145/356842.356846
https://www.amazon.science/publications/using-lightweight-formal-methods-to-validate-a-key-value-storage-node-in-amazon-s3
https://www.amazon.science/publications/using-lightweight-formal-methods-to-validate-a-key-value-storage-node-in-amazon-s3
https://doi.org/10.1145/3341301.3359632
https://www.microsoft.com/en-us/research/publication/ironfleet-proving-practical-distributed-systems-correct/
https://www.microsoft.com/en-us/research/publication/ironfleet-proving-practical-distributed-systems-correct/

Formal Modeling and Analysis of Distributed Systems Conference’17, July 2017, Washington, DC, USA

Verification of High-Performance Concurrent Programs. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 197–210. https://doi.org/10.1145/3385412.3385971

[8] Chris Newcombe. 2014. Why amazon chose TLA+. In International Conference
on Abstract State Machines, Alloy, B, TLA, VDM, and Z. Springer, 25–39.

[9] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeuff. 2015. How Amazon Web Services uses formal methods.

Commun. ACM (2015). https://www.amazon.science/publications/how-amazon-
web-services-uses-formal-methods

[10] P-GitHub. 2021. The P Programming Langugage. https://github.com/p-org/P.
[11] TLA+-Examples-GitHub. [n. d.]. https://github.com/tlaplus/Examples
[12] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. 2022. {DuoAI}: Fast,

Automated Inference of Inductive Invariants for Verifying Distributed Protocols.
In 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22). 485–501.

https://doi.org/10.1145/3385412.3385971
https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods
https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods
https://github.com/p-org/P
https://github.com/tlaplus/Examples

	Abstract
	1 Introduction
	2 Tutorial Overview
	2.1 Target Audience

	References

